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A Wireless Sensor Network (WSN) design often requires the decision of optimal locations
(deployment) and transmit power levels (power assignment) of the sensors to be deployed
in an area of interest. Few attempts have been made on optimizing both decision variables
for maximizing the network coverage and lifetime objectives, even though, most of the lat-
ter studies consider the two objectives individually. This paper defines the multiobjective
Deployment and Power Assignment Problem (DPAP). Using the Multi-Objective Evolution-
ary Algorithm based on Decomposition (MOEA/D), the DPAP is decomposed into a set of
scalar subproblems that are classified based on their objective preference and tackled in
parallel by using neighborhood information and problem-specific evolutionary operators,
in a single run. The proposed operators adapt to the requirements and objective prefer-
ences of each subproblem dynamically during the evolution, resulting in significant
improvements on the overall performance of MOEA/D. Simulation results have shown
the superiority of the problem-specific MOEA/D against the NSGA-II in several network
instances, providing a diverse set of high quality network designs to facilitate the decision
maker’s choice.

Crown Copyright � 2009 Published by Elsevier B.V. All rights reserved.
1. Introduction and background

The design of Wireless Sensor Networks (WSNs) [1] is a
highly complicated task with substantial impact on the
quality, cost and efficiency of real life sensor applications.
Sensors are small electronic devices with limited energy,
memory and transmit power capabilities, which in some
sensor network applications are also limited in number
because of their high cost [2]. A typical goal of these
network designs is to form a long-lived WSN, such that
the sensors, using their sensing capabilities and wireless
transceivers, effectively cover a region of interest and
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; fax: +44 0 1206 87

antinidis), kunyang@
, dzeina@cs.ucy.ac.cy

nidis et al., A multi-object
mput. Netw. (2009), doi:
forward important information to a common collection
point, usually referred to as a data sink.

For most WSNs, a major design step is to selectively
decide the locations of the sensors to maximize the cov-
ered area of a targeted region. This particular problem
has different appellations in the literature, e.g. placement,
coverage or deployment problem in WSNs, where Younis
and Akkaya [3] provide a good overview of various strate-
gies. Many practitioners, such as Meguerdichian et al. [4],
have pointed out that the coverage objective is a measure
of the quality of service (QoS) that is provided by a partic-
ular network design. Several researchers [5,6] have proven
the NP-hardness of various deployment problems. The
main focus is often to determine an optimal sensor place-
ment to cover a grid area (sometimes under uncertainty
[6]) and minimize the cost or prolong the network lifetime
[7]. None of the above studies, however, have considered
an energy-aware transmit power level assignment for
B.V. All rights reserved.
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maximizing the network lifetime while tackling a deploy-
ment problem. In sensor network applications, where the
number of available sensors is limited and the desired area
is large, the sensors usually operate under high transmit
power levels, which is the dominant parameter of their to-
tal energy consumption. This often results on a premature
exhaustion of their initial power supply. Thus, another ma-
jor step in WSN design is to assign energy efficient trans-
mit power levels to the sensors to maximize the network
lifetime under certain energy constraints [8]. This problem
is commonly known as the power/range assignment prob-
lem in WSNs [9] and it is proven NP-hard by [10], with the
objective of minimizing the total communication ranges of
the network. The same problem, while maintaining the
connectivity [11,12], is proven NP Complete by Cheng
et al. [13], where Santi et al. [14] solved it by means of a
probabilistic approach.

Few researchers, however, have tackled the Deployment
and Power Assignment Problems (DPAPs) in WSNs, simulta-
neously. For example, Cheng et al. [15] and Liu and Moha-
parta [2] have studied various formats of the DPAP. Their
main focus was to determine both the locations of the sen-
sors and the distance between the sensors (transmission
range) for maximizing the network lifetime or minimizing
the deployment cost under certain coverage requirements,
or maximize the covered area given a fixed number of sen-
sors and a desired lifetime. In both cases, the authors have
analytically tackled the problem for linear networks and
they have proposed several heuristic methods for planar
networks. The goal of the DPAP, tackled by Chen et al.
[16], was to find the minimum number of sensors, the opti-
mal sensor placement and the transmission structure for
maximizing a utilization efficiency objective, which is
defined as the network lifetime per unit deployment cost.
The authors proposed an approximation approach where
the placement of the sensors ensures a fully covered area
and a simultaneous depletion of their initial power supply.
All the latter approaches, however, optimize the lifetime
and coverage objectives individually and sequentially, or
by constraining one and optimizing the other. This often
results in ignoring and losing ‘‘better” solutions since cov-
erage and lifetime are conflicting objectives and a decision
maker needs an optimal trade-off. Thus, there is not a single
solution that can optimize both objectives simultaneously,
but a set of equally important solutions.

Because so many different aspects are involved, the
respective DPAPs are a proper object for Multi-Objective
Optimization (MOO). Considering a maximization Multiob-
jective Optimization Problem (MOP) with k objectives, a
solution X� is considered non-dominated or Pareto optimal
with respect to another solution Y, if 8i 2 f1; . . . ; kg;Xi P
Yi ^ 9i 2 f1; . . . ; kg : Xi > Yi, this is denoted as X � Y . The
set of all Pareto optimal or non-dominated solutions in
the search space, also called Pareto Set (PS), is often
mapped to a Pareto Front (PF) in the objective space [17].

In [18], we introduced the multi-objective DPAP in
WSNs, which is typical for applications that invoke a lim-
ited number of expensive sensors, where their operation
is significantly affected by their position and communica-
tion [19]. In these cases, the random massive deployment
[20] and dynamic power assignment [9] is not the only
Please cite this article in press as: A. Konstantinidis et al., A multi-object
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choice; and the application affords the ‘‘luxury” of using
a centralized or even an off-line algorithm to compute
the locations and transmit power levels of the sensors,
prior deployment. Thus, we have considered it critical
and challenging to investigate the following problem: for
a given surveillance sensing field, determine the locations
and the transmit power levels of a limited number of sen-
sors to be deployed, to maximize the network coverage
and lifetime, at the same time. By obtaining the PS and
PF of the DPAP prior deployment, a critical decision making
dilemma is mainly tackled. Namely, ‘‘Having a limited num-
ber of available sensors, what portion of the area should be
covered and for how long?”. In MOO, a decision maker can
analyze both the PS and PF, and then choose the most
appropriate Pareto optimal network topology for each sce-
nario, instead of making the decision and then designing
the topology. For example, possible choices of the PS in
DPAP could be, to employ: (1) a network topology for cov-
ering the whole area for a very short time, (2) a long-lived
network topology covering a small portion of the area, or
alternatively, (3) a network topology that balances the net-
work lifetime and coverage.

In the design and analysis of communication systems
and networks, researchers have successfully introduced
techniques inspired by other disciplines, such as analogies
with physics [21] or natural biology [22] (e.g. Evolutionary
Algorithms (EAs) inspired by the biological evolution) for
tackling difficult problems, such as DPAP. The successful
adaptation of EAs in sensor networks led to the develop-
ment of several EA-based application specific approaches
for WSN design, often dealing with a single objective func-
tion [23] or multiple objectives combined to a single objec-
tive function [24]. MOO is a relatively new area in WSNs
and it is difficult to apply an existing linear/single objective
method to effectively tackle the multiobjective DPAP, giv-
ing a set of non-dominated solutions. Thus, the DPAP
may serve as a real world benchmark for multiobjective
methods. The literature hosts several interesting ap-
proaches for tackling MOPs, with Multi-Objective Evolu-
tionary Algorithms (MOEAs) posing all the desired
characteristics for obtaining a set of non-dominated solu-
tions, in a single run. In the following, we discuss several
MOPs in WSNs which are tackled by general purpose
MOEAs that utilize standard EA operators [25].

Jourdan and Weck [26] tackled a layout optimization
problem in WSNs with the general purpose Multi-objective
Genetic Algorithm (MOGA), utilizing a single-point cross-
over and a random mutation for offspring reproduction.
In 2005, Rajagopalan and co-workers have formulated a
sensor placement problem [27], with main focus on opti-
mizing the sensor locations for maximizing the probability
to target detection and minimizing both the energy dissi-
pation and the number of sensors, simultaneously. The
authors tackled the MOP with their own Evolutionary
Multi-objective Crowding Algorithm (EMOCA), utilizing
the general purpose tournament selection, single-point
crossover and random mutation operators. In 2007, Oh
et al. [28] adopted the Non-Dominated Sorting Genetic
Algorithm-II [29] (NSGA-II) to tackle a WSN deployment
problem, generating new solutions with the conventional
single-point crossover and random mutation operators.
ive evolutionary algorithm for the deployment and power assign-
10.1016/j.comnet.2009.08.010
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More recently (in 2008), Kim et al. [30] have also used
NSGA-II to tackle a surveillance sensor placement problem.
The authors have utilized the single-point crossover for
offspring reproduction, adding a restriction, i.e. the com-
mon elements in the two parents are not exchanged and
a node-exchange mutation. NSGA-II is also used by Jia
et al., in 2009, for tackling two multiobjective optimization
scheduling problems [31,32]. The authors have utilized the
basic tournament selection, two-point crossover and ran-
dom/swap mutation operators, respectively. Even though
the latter problems are considerably different from DPAP,
the main difference between their studies and ours is in
the way that they treat the MOPs and apply the MOEAs.
That is, all the aforementioned studies treat a WSN MOP
as a ‘‘black box” [33], i.e. without using problem-specific
knowledge, which may have undesirable effects, such as
forcing the evolutionary process into unnecessary searches
and destructive mating, negatively affecting their overall
performance. This can be considered as a main drawback
of the generic MOEAs when dealing with real life problems
(such as DPAP).

Therefore, the incorporation of problem-specific knowl-
edge in MOEAs to direct the search into promising areas of
the search space can be proven beneficial [34]. However,
designing problem-specific operators for a MOP, as a whole,
is difficult. The Multi-Objective Evolutionary Algorithm
based on Decomposition (MOEA/D) [35] alleviates this
difficulty by decomposing the MOP into many scalar sub-
problems that are optimized in parallel, by using neighbor-
hood information and scalar techniques. The difficulty in
adding knowledge on a decompositional MOEA is that the
subproblems have different objective preferences, require
different treatment and have to be solved simultaneously,
in a single run. Therefore, the problem-specific evolutionary
operators should adapt to the requirements and objective
preference of each subproblem dynamically, during the evo-
lution. In this paper, we propose a MOEA/D-based approach,
which strategically monitors problem-specific evolutionary
operators and provides different treatment to each subprob-
lem of the DPAP based on its WSN requirements.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the multiobjective DPAP, including a
DPAP analysis that classifies the Pareto optimal solutions
in the objective space based on their objective preferences.
Section 3 presents the proposed MOEA/D, i.e. details the
problem-specific evolutionary operators. Sections 4 and 5
introduce the experimental setup and the performance
metrics, respectively. The simulation results in Section 6
verify the necessity of the proposed operators for improv-
ing the performance of MOEA/D with respect to the con-
ventional MOEA/D and the NSGA-II. Section 7 concludes
this paper and suggests some topics for future research.
2. The deployment and power assignment problem
(DPAP)

2.1. System model and assumptions

Consider a 2D static WSN formed by: a rectangular
sensing area A, N homogeneous sensors and a static sink
Please cite this article in press as: A. Konstantinidis et al., A multi-object
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H with unlimited energy, placed at the center of A. The sen-
sors are responsible for monitoring and periodically report
an event of interest to H. Hence, each sensor i must be able
to communicate directly or via multiple hops through
nearby sensors with H. We assume a perfect medium ac-
cess control, such as SMAC [36], which ensures that there
are no collisions at any sensor during data communication
and we adopt the simple but relevant path loss communi-
cation model as in [2]. In this model, the transmit power
level that should be assigned to a sensor i to reach a sensor
j is Pi ¼ b� da

ij , where a 2 ½2;6� is the path loss exponent
and b ¼ 1 is the transmission quality parameter. The
energy loss due to channel transmission is da

ij; dij is the
Euclidean distance between sensors i and j, Ri

c ¼ dij is
sensor i’s communication range, s.t. Ri

c 6 Rmax, where Rmax

is a fixed maximum communication distance, which is
constrained by the maximum power that sensors can
transmit, i.e. Pmax. The calculated power assignments are
considered static for the whole network lifetime. The resid-
ual energy of sensor i, at time t, is calculated as follows:

EiðtÞ ¼ Eiðt � 1Þ � ½ðriðtÞ þ 1Þ � Pi � amp�; ð1Þ

where ðriðtÞ þ 1Þ is the total traffic load that sensor i for-
wards towards H at t; riðtÞ is the traffic load that i receives
and relays, ‘‘+1” is the data packet generated by i to for-
ward its own data information and amp is the power
amplifier’s energy consumption. In DPAP, we assume that
the area size A is large and N is relatively small. Conse-
quently, the sensors should spread, to adequately cover
A, and communicate through long transmission distances.
Thus, the transmit power is a major factor on the sensors’
total energy consumption and the energy consumed by the
transceiver electronics as well as for reception and
generation of data are considered negligible and ignored
[2,16].

For sensing purposes and simplicity, we assume that A
is composed of rectangular grids of identical dimensions
centered at ðx0; y0Þ and we adopt a sensing model based
on the definite range law approximation [6]. Namely, a
grid at ðx0; y0Þ is covered, denoted by gðx0; y0Þ ¼ 1, if it
falls within a sensor’s sensing disk pR2

s of radius Rs, other-
wise gðx0; y0Þ ¼ 0. We consider unit-size grids, which are
several times smaller than pR2

s for a more accurate place-
ment [37].

2.2. Problem formulation

The DPAP can be formulated as a MOP,
Given:

� A: a 2D plane, where A ¼ fðx; yÞj0 6 x 6 1;0 6 y 6 1g.
� N: number of sensors to be deployed in A.
� E: initial power supply, the same for all sensors.
� Rs: sensing range, the same for all sensors.
� Pmax: maximum transmission power level, the same for

all sensors.

Decision variables of a network design X:

� ðxj; yjÞ : the location of sensor j.
� Pj: the transmission power level of sensor j.
ive evolutionary algorithm for the deployment and power assign-
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Objectives: Maximize coverage CvðXÞ and lifetime LðXÞ:
The network coverage CvðXÞ is defined as the percent-

age of the covered grids over the total grids of A and is eval-
uated as follows:

CvðXÞ ¼
Xx

x0¼0

Xy

y0¼0

gðx0; y0Þ
" #,

ðx� yÞ; ð2Þ

where x� y is the total grids of A and

gðx0; y0Þ ¼
1 if 9j 2 f1; . . . ;Ng;dðxj ;yjÞ;ðx0 ;y0 Þ 6 Rs;

0 otherwise;

�

is the monitoring status of the grid centered at ðx0; y0Þ.
The network lifetime is defined as the duration from the

deployment of the network to the cycle t at which a sensor
j depletes its energy supply, E [2,16]. The lifetime objective
LðXÞ is evaluated as in Algorithm 1.

Algorithm 1. Lifetime evaluation

Step 0: Set t :¼ 1; Ejð0Þ :¼ E;8j 2 f1; . . . ;Ng;
Step 1: For all sensors j at each time interval t do

Step 1.1: Update EjðtÞ according to Eq. (1);
Step 1.2: Assign each incoming link of sensor j

a weight equal to EjðtÞ;
Step 1.3: Calculate the shortest path from j to

H;
1

P
m

Step 2: If 9j 2 f1; . . . ;Ng such that EjðtÞ ¼ 0 then
stop and set:
Note that g

lease cite th
ent problem
LðXÞ :¼ t; ð3Þ
Else t ¼ t þ 1, go to step 1;
The same algorithm can be easily modified to consider
different energy models in Step 1.1 and routing algorithms
(e.g. geographical-based [12] routing algorithms) in Step
1.3.

2.3. DPAP Analysis

In the multiobjective DPAP defined here, there does not
exist a solution that can optimize all objectives at the same
time. Therefore, we will be interested in achieving a set of
Pareto optimal solutions, or an approximation to it. The
Pareto optimal solutions, however, which are close in the
objective space, should have many similarities with each
other in the search space, recalling the so-called Proximate
Optimality Principle (POP) [38]. The POP, an underlying
assumption in most heuristics, assumes that good solu-
tions have similar structure.

This subsection aims at providing some insights about
the properties and features of some particular solutions
that might be part of the PF. For example, the extreme solu-
tions XA and XB (Fig. 1a), which optimize one objective
each, are identified and good solutions1 are designed ana-
lytically. Moreover, ad hoc design guidelines are provided
for the remaining subset PF � fXA;XBg, named the non-ex-
treme set of solutions, based on some network concepts and
ood solutions do not imply optimal solutions.

is article in press as: A. Konstantinidis et al., A multi-object
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their positions (e.g. areas a; b and c in Fig. 1b) in the objec-
tive space (i.e. objective preference).

The extreme solution XA provides the maximum life-
time and minimum coverage among all the solutions in PF,
LðXAÞ ¼ E
da

min � amp
; CvðXAÞ ¼ A0=ðx� yÞ;
where A0 � ð2� ðRs þ dminÞÞ2; dmin is a controllable parame-
ter that indicates the minimum distance allowed between
a sensor and H. Hence, a dense deployment of all sensors
around H with minimum transmission distances, Ri

c ¼
dmin, and direct communication with H (hence riðtÞ ¼ 0) is
desirable.

The extreme solution XB provides the maximum cover-
age and minimum lifetime among all the solutions in PF.
CvðXBÞ highly depends on N, which in DPAP is assumed
to be small. Thus, let N 6 ðx�yÞ

ð2RsÞ2
. In that case, XB is designed

by regularly deploying N sensors with a fixed distance 2Rs

between each other and H, avoiding any sensing range
overlaps:
CvðXBÞ ¼ N � pR2
s

ðx� yÞ ; LðXBÞ ¼ E
k� ðN=4Þ � ð2RsÞa � amp

;

where ðk� ðN=4Þ � ð2RsÞa � ampÞ is the energy consump-
tion of each sensor i that is directly connected to H at each
t, and N=4� k is a fixed minimum number of packets of
size k (i.e. the traffic load) that should be carried by each
sensor i, assuming a regular, symmetrical deployment.

The goal of DPAP, however, is to provide the interested
users with a diverse set of network design choices, giving
the trade-off between the extreme solutions XA and XB.
However, the procedure of designing the non-extreme
topologies is complicated, since there is not a scalar meth-
od which can design all of them, in a single run. In the fol-
lowing, we introduce some general concepts for searching
and/or designing good solutions in different areas of the
objective space (e.g. a; b, and c in Fig. 1b):

� Solution Xa: favors a high network lifetime. Hence, the
focus is to provide dense network designs by placing
the sensors close to H, with low transmit power levels.
This, however, leads to high sensing range overlaps
and poor coverage.

� Solution Xc: favors a high network coverage. Therefore,
the focus is to provide spread network designs, by plac-
ing the sensors with high transmit power levels and low
sensing range overlaps between each other [39] and the
area boundaries. This, however, leads to a high energy
consumption, which results to a poor lifetime.

Furthermore, it is expected that the interrelation be-
tween the solutions Xa and Xc and the aforementioned net-
work concepts ‘‘fades” as they get closer to the center of
the PF, respectively. Thereinafter, a combination of those
concepts could provide a balance on the DPAP’s objectives
as follows:
ive evolutionary algorithm for the deployment and power assign-
10.1016/j.comnet.2009.08.010
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� Solution Xb: the sensors are connected in such a way
that their transmit power level decreases/increases,
and the sensing range overlaps increase/decrease as
they get closer to H, according to a slight preference
on the lifetime or coverage objective, respectively.
2.4. DPAP solution representation and ordering

In this paper, a candidate solution X consists of N items.
Its jth item has two parts, ðxj; yjÞ and Pj, which represent
the location and the transmit power level of sensor j,
respectively.

In our approach, the items of a solution X are ordered as
follows: the sensor locations in X are sorted based on their
distance to H, where 1 is the closest and N is the farthest
sensor location with respect to H, respectively. This results
in having the locations of the sensors that are densely de-
ployed around H at the beginning of each solution and the
locations of the sensors that are spread away at the end.
The dense to spread ordering (denoted as dtsOr) facilitates
the crossover operator that will be introduced shortly. Solu-
tion X is illustrated in Fig. 2. Thereinafter, each sensor j is as-
signed a transmit power level Pj proportional to Rj

c 6 Rmax,
such that it reaches its closest neighbor sensor, e.g. k, where
k < j. The whole process is outlined in Algorithm 2.

Algorithm 2. The dense-to-spread representation
process for each solution Y

Input: A solution Y;
Output: A solution X;
Step 1: Calculate the dense-to-spread ordering

of Y to get X;
Step 2: for each ðxj; yjÞ in X do

ðdj;HÞa if ðxH; yHÞis j0s closest
location and dj;H 6 Rmax � ðaÞ

8>>>><
Please cite
ment prob
Pj ¼ ðdj;kÞa if ðxk; ykÞ is j0s closest
location;k < j;Pk–0 and djk 6 Rmax � ðbÞ

0 otherwise

>>>>:
� In Step 1, the sensors are ordered based on their distance
from H, which facilitates the proposed evolutionary
operators that will be introduced shortly.
this article in press as: A. Konstantinidis et al., A multi-object
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� Step 2 assigns a minimum transmission power to each
sensor such that it reaches its closest neighbor. This is
due to the concept that multiple short hops are more
beneficial than a long hop in applications where N is
small and the sensors communicate through long trans-
mission ranges [15]. The reason is that,

ðrjðtÞ þ 1Þ � da
ju > ððrjðtÞ þ 1Þ � da

jk þ ðrkðtÞ þ 1Þ � da
kuÞ;
since dju P djk þ dku.
� If Step 2 (a) and (b) are not satisfied then, Pj ¼ 0, which

means that sensor j is disconnected.
3. The proposed MOEA/D for the DPAP

This section details each operator of the proposed
MOEA/D designed for the DPAP. Note that, the underlying
idea behind the problem-specific EA operators might shed
some light on the design of MOEA/Ds for other MOPs.

3.1. Decomposition

Initially, MOEA/D needs to decompose a MOP into a set
of subproblems. Any decompositional technique can serve
for this purpose [35]. In this paper, the Weighted Sum
approach is used, as follows. The multiobjective DPAP is
decomposed into m scalar optimization subproblems
considering two objectives. The ith scalar optimization
subproblem can be defined as:

max giðX; kiÞ ¼ kiLðXÞ þ ð1� kiÞCvðXÞ;

where ki is the weight coefficient of subproblem i ¼ 1; . . . ;m.
For the remainder of this paper, we consider a uniform
spread of the weights ki, which remain fixed for each i for
the whole evolution and are determined as follows:

ki ¼ 1� ði=mÞ;

for i ¼ 1; . . . ;m and k1 ¼ 1. Hence, the ki coefficient is
mainly utilized for decomposing a MOP into a set of scalar
subproblems by adding different weights to the objectives.
In this paper, we have also given a problem-specific mean-
ing to this parameter. Considering the ki weight coefficient
of a subproblem i, we can predict the objective preference
ive evolutionary algorithm for the deployment and power assign-
10.1016/j.comnet.2009.08.010
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of a particular design and therefore, its position in the
objective space, e.g. Fig. 1b. Thereinafter, appropriate sca-
lar strategies can be employed to optimize it accordingly.
Note that, this beneficial procedure cannot be utilized by
any non-decompositional MOEA framework.

3.2. MOEA/D general framework

A general MOEA/D approach usually proceeds as in
Algorithm 3.

Algorithm 3. The MOEA/D general framework
P
m

Input:
lease cite
ent probl
� network parameters (A, N, E, Rs; Pmax);
� m: population size and number of

subproblems;
� T: neighborhood size;
� uniform spread of weight vectors
ðk1;1� k1Þ; . . . ; ðkm;1� kmÞ;

� the maximum number of generations,
genmax;
Output: the external population, EP.

Step 0-Setup: Set EP :¼ ;; gen :¼ 0; IPgen :¼ ;;
Step 1-Initialization: Uniformly randomly generate

an initial internal population
IP0 ¼ fX1; 	 	 	 ;Xmg;

Step 2: For i ¼ 1; . . . m do
Step 2.1-Genetic Operators: Generate a new

solution Y using
the genetic
operators.

Step 2.2-Repair heuristic: Apply a problem-spe-
cific repair heuristic
on Y to produce Z.
Step 2.3-Update Populations: Use Z to update
IPgen, EP and the
T closest neigh-
bor solutions of Z.

Step 3-Stopping criterion: If stopping criterion is
satisfied, i.e. gen ¼ genmax,
then stop and output EP,
otherwise gen ¼ genþ 1,
go to Step 2.
this article in press as: A. Konstantinidis et al., A multi-object
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The following remarks are related to the MOEA/D
framework:
� The internal population IPgen of size m keeps the best

solution found so far for each subproblem.
� Solution Y is generated by using a selection operator

(which will be detailed in Section 3.4.1) to choose
two parent solutions from the IPgen, e.g. Pr1; Pr2, a
crossover operator (which will be detailed in Section
3.4.2) to produce a new solution from Pr1; Pr2 and a
mutation operator (which will be detailed in Section
3.4.3) to modify the new solution Y. Solution Z is pro-
duced by using a repair method on Y.

� The T closest neighbor solutions of Z are the solutions
of the T closest subproblems of i in terms of their
weights fk1; . . . ; kmg. This is commonly known as
the T neighborhood of subproblem i.

� The external population EP stores all the non-domi-
nated solutions found so far during the search.

In the following the MOEA/D-based, DPAP-specific
operators are presented.

3.3. Initialization

In Step 1 of MOEA/D, we adopt a random method to
generate m solutions for the initial internal population
(i.e IP0). Namely, a solution Y is initiated by uniformly ran-
domly generating N sensor locations ðxj; yjÞ 2 A. Solution Y
is then ordered to X using Algorithm 2. Each X is then
added in IP0.

3.4. Genetic operators

In the ith pass of the loop in Step 2 of the MOEA/D, the
genetic operators generate a new solution in Step 2.1.

3.4.1. Selection operator
The first genetic operator in Step 2.1 is the selection.

Selection is responsible for emulating the survival of the
fittest concept and to choose promising solutions from
the current population, known as parents, to be included
for offspring reproduction in the next generation. In this
paper, we propose a M-tournament selection operator
ive evolutionary algorithm for the deployment and power assign-
10.1016/j.comnet.2009.08.010
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(denoted as M-tourS) that combines the mating restriction
considered during selection in [35] and a standard tourna-
ment selection [25]. M-tourS, which proceeds as in Algo-
rithm 4, mainly relies on one of the core ideas of MOEA/
D. That is, two neighbor solutions in the weight space
(i.e. with respect to the Euclidean distance of their weights
fk1; . . . ; kmg) should be similar to each other in the decision
space (please refer to [35] for more details).

Algorithm 4. The M-tournament selection operator
(M-tourS) for each i subproblem i

Input: A population of solutions, IPgen;
Output: Two parent chromosomes, Pr1; Pr2;
Step 1: Select the solutions X 2 IPgen of the M closest

subproblems of i to compete in the
tournament;

Step 2: Evaluate each solution X of the tournament
in terms of giðX; kiÞ;

Step 3: Find the best two solutions of the tourna-
ment, set them as Pr1; Pr2 and stop;

Hereupon, the main differences of the proposed operator
compared to the standard tournament selection operator
[25] (denoted as tourS) and the selection operator sug-
gested by [35] (denoted as T-randomS) are the following:
� In Step 1, the solutions selected to compete in a

subproblem i’s tournament are the solutions of the
M closest subproblems of i in IPgen, in terms of the
Euclidean distance of their weights fk1; . . . ; kmg,
which are called Xi’s neighbors, instead of:
Pl
m

– randomly selecting M solutions from IPgen to com-
pete in the tournament as in [25], having a higher
probability of providing poor offspring for a par-
ticular subproblem i.

– randomly selecting solutions from the T closest
subproblems of i, as in [35], without competing
in a tournament.

� In Steps 2 and 3, Xi’s neighbors, e.g. Xj and Xk, are
competing in i’s tournament in terms of giðX; kiÞ,
ignoring their own kj and kk, their Pareto domination
and/or ranking. In this way, more selection pressure
is provided towards the optimal point of each partic-
ular i for better exploitation.
Remark 1. the optimization of a network design Xi, should
mainly acquire good topological information (i.e. efficient
sensor locations and transmit power levels) from a neigh-
bor network design Xj; instead of a network design Xm

which is far away in the weight space (even if Xm is a non-
dominated solution). This is due to the highly non-linear
multi-hop nature of WSNs. A tiny change in the topology
may lead to a big change on the objective values, because
of the connectivity and the exponential relationship
between the sensors transmission distance and energy
consumption. According to Section 2.3, the subproblems of
area a prefer dense network designs comprised of sensors
located close to H with low transmit power levels. In
contrast, subproblems in area c prefer spread network
ease cite this article in press as: A. Konstantinidis et al., A multi-object
ent problem in wireless sensor networks, Comput. Netw. (2009), doi:
designs comprised of sensors spread along the sensing field
with high transmit power levels. Thus, it should be
preferable to increase the selection pressure, initiate
tournaments composed of neighbor solutions and select
the best for mating, decreasing the probability of generat-
ing poor offspring.

Remark 2. The persistent selection of the best solutions in
the neighborhood for parenthood might also have some
undesirable effects such as premature convergence, i.e.
force the evolutionary search to get trapped in local optima
and have a negative impact on the diversity of the popula-
tion. These cases are usually alleviated by the mutation
operator (which will be detailed in Section 3.4.3).

The two selected parent solutions Pr1 and Pr2 are then
forwarded for recombination to the crossover operator.
3.4.2. Crossover operator
In Step 2.1 (Algorithm 3), the crossover combines

the two parents Pr1 and Pr2 to generate a new solution-
the offspring denoted as O, with a probability rate rc. In this
paper, we propose an adaptive crossover operator (denoted
as aX) that probabilistically controls two crossover strate-
gies, each favoring different areas of the objective space.

Initially, the window crossover is designed in which the
control parameters (behaviors) change dynamically from
subproblem to subproblem based on instant requirements.
To do so, it determines a ‘‘window” of size:

wi :¼ N þ N � ð1� kiÞ; ð4Þ

to select promising genetic material from each parent and
direct the search into promising areas of the search space
for each particular i. The window crossover strategy pro-
ceeds as in Algorithm 5,
ive
10
Algorithm 5. Window crossover for a subproblem i

Input: Two solutions Pr1 and Pr2;
Output: A solution O;
Step 0: Set O ¼ ;; U ¼ Pr1 [ Pr2;
Step 1: Order solution U by using Algorithm 2;
Step 2: Uniformly randomly generate an integer j

from f1;2; . . . ½wi�g, where wi is defined as
in Eq. (4);

Step 3 If there exists a ðxj; yjÞ in U ¼ fðx1; y1Þ;
ðx2; y2Þ; . . . ; ðx2N; y2NÞg then
Step 3.1: Delete ðxj; yjÞ from U and add it

in O;
Step 3.2: If the size of O is not N then

goto Step 2;
otherwise stop and output O;
� The merged solution U is of size 2N.

� When ki is large and LðXÞ favors CvðXÞ, the window

is small such that the sensor locations that will be
added in O are as close to H as possible with low
transmit power levels to provide higher network
lifetime.
evolutionary algorithm for the deployment and power assign-
.1016/j.comnet.2009.08.010
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� When ki decreases and CvðXÞ starts favoring LðXÞ,
wi gradually increases to give the chance to the
sensor locations which are spread in A to be added
in O and therefore to provide better network cov-
erage.

� Note that, the window always start at position 1 of
solution X to always include the sensor locations
of the ‘‘dense” part of the network (i.e. close to
H, see Fig. 2) and therefore to maintain the connec-
tivity as the sensor locations spread in the topology.

Fig. 3a shows a crossover operation for the extreme
subproblem 1 with k1 ¼ 1 and a minimum w1 ¼ N. The
sensor locations which are closer to H from both Pr1 and
Pr2 are added in offspring O, giving a new dense network
design. Fig. 3b shows a crossover operation for the other
extreme subproblem m with km ¼ 1 and maximum
wm ¼ 2� N. Sensor locations are randomly selected from
both Pr1 and Pr2 and added in offspring O giving a new
spread network design. Thus, the window strategy should
be capable of providing offspring solutions in all areas of
the objective space in Fig. 1b.

Remark 1. The window crossover on its own, however,
may have some undesirable effects for low weights (e.g.
km) and particularly for area c of the objective space,
generating poor offspring. More specifically, when
ki ! 0then wi ! 2� N, which basically drives the cross-
over operation into a uniform random selection of sensor
locations from the merged parent set U. In that case, there
is a high probability of selecting locations which are too
close to each other, resulting in high sensing range
overlaps and low network coverage. This is not beneficial
for the particular subproblems and consequently for
offspring reproduction of network designs that require
high coverage quality.s

To overcome this undesirable effect, a clustering cross-
over is designed, which aims at obtaining network topolo-
gies of high coverage. The clustering crossover proceeds as
in Algorithm 6.
Fig. 3. Examples on the problem-specific

Please cite this article in press as: A. Konstantinidis et al., A multi-objective
ment problem in wireless sensor networks, Comput. Netw. (2009), doi:10
Algorithm 6. Clustering crossover strategy for a
subproblem i

Input: Two solutions Pr1 and Pr2;
Output: A solution O;
Step 0: Set O ¼ Pr1 [ Pr2; d0 ¼ dc;
Step 1: Order infeasible solution O ¼ fðx1; y1Þ; . . . ;

ðx2N; y2NÞg by using Algorithm 2;
Step 2: For j ¼ 1 to 2N
window cros

evolutiona
.1016/j.com
While ðxj; yjÞ 2 O and 9ðxk; ykÞ 2 Ojdjk 6 d0

do;

Step 2.1: Uniformly randomly delete

either location ðxj; yjÞ or ðxk; ykÞ
from O;

Step 2.2: If the size of O is equal to N
then stop and output O;
End while
0 0
Step 3: Set d ¼ d þ dc and goto Step 2;
� Initially, solution O is of size 2N. This solution is

infeasible since N is the maximum number of loca-
tions allowed in each solution. Each sensor j at loca-
tion ðxj; yjÞ 2 O represents a cluster, having d0 as the
minimum Euclidean distance measure between each
cluster, which is initially set as the distance dc

between the centers of two adjacent diagonal grids
in area A.

� In Step 2, two clusters centered at locations ðxj; yjÞ
and ðxk; ykÞ are merged if djk 6 d0. In that case, either
location ðxj; yjÞ or ðxk; ykÞ is deleted from O. This con-
tinues until N locations remain in O.

� When Step 3 is reached, solution O is still infeasible
and there are no more locations with djk 6 d0. Thus,
increase the Euclidean distance measure d0 ¼ d0 þ dc

to further spread the locations in the solution.

Remark 2. This approach benefits the coverage objective
and particularly the solutions of the subproblems with low
weights in area c, having less probability to create a poor
offspring than the window crossover.
sover operator.

ry algorithm for the deployment and power assign-
net.2009.08.010

http://dx.doi.org/10.1016/j.comnet.2009.08.010


A. Konstantinidis et al. / Computer Networks xxx (2009) xxx–xxx 9

ARTICLE IN PRESS
Remark 3. In contrast, it might provide a poor lifetime
objective, since the sensors should be assigned high trans-
mit power levels to support the spread-like deployment
directed by the clustering-based crossover.
Algorithm 7. Adaptive crossover operator for each
subproblem i

Input: Two solutions Pr1 and Pr2;
Output: A solution O;
Step 1:
Please cite t
ment probl
Set d ¼
1 if ki P 0:5
ki þ 0:1 if 0:3 < ki < 0:5
0 otherwise

8><
>: ð5Þ
Step 2: Uniformly randomly generate a number rand
from [0,1].

Step 3:
Apply

Algorithm 5-window to generate O

if rand< d

Algorithm 6-clustering to generate O

otherwise

8>>><
>>>:

ð6Þ
The combination of the window and the clustering cross-
overs can be a promising example of a probabilistic mixture
or an adaptive crossover operator for DPAP, as outlined in
Algorithm 7. In this kind of crossovers, different mecha-
nisms are adopted with a probability d for producing a
new solution, where d ¼ ki means that two crossover strat-
egies are almost equally applied in each generation. In this
paper, we suggest a d probability such that the window
crossover is applied with highest probability in areas a and
b and the clustering in area c (considering Remarks 1–3).
3.4.3. Mutation operator
The last operator in Step 2.1 of MOEA/D (Algorithm 3

in Section 3.2) is the mutation, which is responsible for
maintaining the diversity of the population by modifying
the locations of a solution O with a rm probability. How-
ever, the choice of the new location should be carefully
determined, since an improper choice may damage all
the preceding actions of the problem-specific selection
and crossover operators. For example, if the mutation
operator modifies a sensor location ðxj; yjÞ without
considering the subproblem’s objective preference might
result in:
� A disconnected sensor, which is undesirable for

subproblems that favor a high coverage.
� Sensors with high Pj, which is undesirable for sub-

problems that favor a high lifetime.
� Partition of the network, since the deletion of a sen-

sor in multi-hop communication may disconnect
other parts of the network and might create a bottle-
neck that negatively influences the network lifetime
and/or uncover any previously covered region.
Thus, it is considered reasonable to allow the mutation
operator to randomly modify the locations of a solution
his article in press as: A. Konstantinidis et al., A multi-object
em in wireless sensor networks, Comput. Netw. (2009), doi:
with an rm probability, but restricting the modification
to close to the current value or at least to bias the proba-
bility distribution in its favor. This may maintain the
diversity of the population without destructive behavior
or unnecessary searches. Thus, we propose an adaptive
mutation operator that is composed of two problem-
specific mutation strategies, namely the local and global
mutations that favor different areas of the objective space,
respectively.

Algorithm 8. Adaptive mutation operator for each
subproblem i

Input: A solution O.
Output: A mutated solution Y.
Step 0: Set rm;
Step 1: Order solution O by using Algorithm 2;
ive
10
If ki > 0:5 then
Step 2: For j ¼ 1 to N do

Step 2.1: Generate a uniform random number
rand 2 ½0;1�;

Step 2.2: If rand 6 rm then
evolution
.1016/j.com
Calculate ðx0j; y0jÞ using Eq. (7). Replace
ðxj; yjÞ 2 O with ðx0j; y0jÞ;
Else
Step 3: For j ¼ 1 to N do
Step 3.1: Generate a uniform random number

rand 2 ½0;1�;
Step 3.2: If rand 6 rm then
Calculate A0 and ðx0j; y0jÞ using Eq. (8).
Replace ðxj; yjÞ 2 O with ðx0j; y0jÞ;
End if
Step 4: Output Y ¼ O;
The adaptive mutation operator (aM) proceeds as in Algo-
rithm 8.
� In Step 2, if ki favors the lifetime objective (i.e. area a

and the beginning of area b) then a location ðxj; yjÞ is
modified ‘‘locally”, i.e.
Uniformly randomly generate x0j 2 ½xj � dc; xj þ dc�

and y0j 2 ½yj � dc; yj þ dc�;
ð7Þ
to provide a minimum shift from its current position,
where dc is the distance between the centers of two adja-
cent diagonal grids, seeking to:
– either, slightly increase CvðXÞ in the sake of
increasing Pj, when the shift is backward with
respect to H,

– or, benefit the lifetime objective by decreasing the
sensors Pj.

� In Step 3, if ki favors the coverage objective (i.e. the
end of area b and area c) then a location ðxj; yjÞ is
modified ‘‘globally”, i.e. a new location ðx0j; y0jÞ is gen-
erated in a sub-area A0 # A which is defined as
follows:
ary algorithm for the deployment and power assign-
net.2009.08.010
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Table 1
Network instances.

Network
instances

Area size,
A ðm2Þ

# of sensors,
N

Density
(N/A)

NIn1 1� 106 13 0:13� 10�4

NIn2 4� 106 52 0:13� 10�4

NIn3 1� 106 50 0:5� 10�4

NIn4 4� 106 200 0:5� 10�4
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xmin ¼ ðxH � jxH � xjjÞ � Rmax; ymin ¼ ðyH � jyH � yjjÞ

� Rmax; xmax ¼ ðxH þ jxH � xjjÞ þ Rmax;

ymax ¼ ðyH þ jyH � yjjÞ þ Rmax; x0 ¼ xmax � xmin;

y0 ¼ xmax � xmin;

A0 # Ais a2� D area with lengthx0 and widthy0:

Uniformly randomly generateðx0j; y0jÞ 2 A0; ð8Þ
Table 2
Parameter settings: algorithm factors with lownhigh levels.

Algorithm Factors Low High

Crossover rate, rc (Section 3.4.2) 0.1 1
Mutation rate, rm (Section 3.4.3) 0.1 0.5
Max # of generations, gen (Section 3.7) 100 250
where x0 and y0 are the width and height of A0, respectively.
Note that when k! 0 then it should be that A0 ! A.

The modified offspring is then forwarded to the repair
operator.
max

Pop. size & # of subproblems, m (Section 3.2) 120 200
Tournament size, M (Section 3.4.1) 5 10
Neighborhood size, T (Section 3.2) 2 10
3.5. Repair operator

In Step 2.2 of MOEA/D (Algorithm 3), a local heuristic
checks a solution Y if:
Case #1: there is a location ðxj; yjÞ 2 Y at the same loca-

tion as H (i.e. ðxH; yHÞ);
Case #2: a location ðxj; yjÞ 2 Y is the same as another

location ðxk; ykÞ 2 Y;

In both cases, the local heuristic repairs the solution Y
by uniformly randomly generating a new location
ðx0j; y0jÞ 2 A, such that ðx0j; y0jÞ does not fall in either Case #1
or Case #2. The repair heuristic increases the sensors’ indi-
vidual utilization. Since, in both Cases #1 or #2 the sensors
cannot benefit either the lifetime objective by acting, for
example, as relays to increase the load balancing and/or in-
crease the multiple short hops towards H, or the coverage
objective by covering any uncovered regions in the topol-
ogy. Solution Z is then used to update the populations of
MOEA/D.
3.6. Update of populations

In Step 2.3, the populations (defined in Section 3.2) of
MOEA/D are updated for each solution Zi as follows:

1. The ðIPgenÞ update phase. If giðZijkiÞ > giðXijkiÞ then
IPgen [ fZig and IPgen=fXig, otherwise Xi remains in
IPgen.

2. The neighborhood (defined in Section 3.2) update
phase. The new solution Zi is compared with its T
closest Xj 2 IPgen neighbor solutions. If gjðZijkjÞ >
gjðXjjkjÞ then, IPgen [ fZig and IPgen=fXjg, otherwise,
Xj remains in IPgen, where j ¼ 1; . . . ; T.

3. The (EP) update phase. EP ¼ EP [ fZig if Zi is not dom-
inated by any solution Xj 2 EP, and EP ¼ EP=fXjg if
Zi � Xj, for all Xj 2 EP.
3.7. Termination criterion

At the end of each generation the termination criterion
(the maximum number of generations, genmax) is checked
to decide whether the search should stop.
Please cite this article in press as: A. Konstantinidis et al., A multi-object
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4. Experimental setup

In this paper, we study four network test instances
(Table 1), which represent a broad class of the large-scale
and spread DPAP WSN topologies. The network test in-
stances are designed following our analysis in Section 2.3.

In DPAP, there are too many possible parameter settings
to try them all. Hence, in our studies we have adopted the
widely used Factorial design [40]. Factorial design investi-
gates all possible combinations of the levels of some factors
in a complete replication of an experiment. Factors k are the
parameters that affect the experiment and levels (e.g. 2, a
High and a Low level) are the factors’ values. In cases where
the experimenter can reasonably assume that certain inter-
actions between the factors are negligible then, information
on the main effects may be obtained by running only a frac-
tion of the complete factorial experiment. This is known as
the 2-level Fractional Factorial Design, denoted as 2k�q,
where q are the factors which are not considered as a main
effect on the experiment and their value is decided based
on the interactions of the remaining k� q factors. All algo-
rithm factors and their levels are presented in Table 2.

In all simulation studies, the following network param-
eters are set [41,42]: Rs=Rmax ¼ 100=200; E ¼ 5J; dmin ¼
100 m;a ¼ 2; amp ¼ 100 pJ=bit=m2 and square-grids of
side length 10 m. Moreover, the network lifetime and the
network coverage are evaluated as in Section 2.1 and the
lifetime objective is normalized by the LðXAÞ defined in
Section 2.3. All algorithms were coded in Java program-
ming language and run on an Intel/circledR Pentium 4
3.2 GHz Windows XP server with 1.5 GB RAM.
5. Performance metrics

This section briefly describes the performance metrics
used for comparing sets of solutions. In MOO, practitioners
are usually interested in the quality of the approximation
to the Pareto set that an algorithm is able to generate. In
addition, a fast and efficient approach is also desirable. A
single metric, however, cannot provide adequate results
ive evolutionary algorithm for the deployment and power assign-
10.1016/j.comnet.2009.08.010
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for the strength of an MOEA in all tasks. Therefore, a set of
performance metrics are adopted as follows.

The D-metric, proposed by Deb et al. [29], measures the
extent of spread achieved among the obtained solutions, as
follows:

D ¼
df þ dl þ

PK
j¼ijdj � �dj

df þ dl þ ðK � 1Þ�d
;

where df and dl are the distances between the extreme
solutions X1 and Xm and the optimal solution XA and XB,
respectively. A low DðAÞ implies a uniform spread of the
non-dominated network designs in the objective space by
algorithm A, giving a variety of network design choices to
the WSN decision maker.

A straightforward comparison metric between two sets
of non-dominated solutions is the C-metric [29]. The
CðA;BÞ metric, which is usually considered as a MOEA’s
quality metric, evaluates the ratio of the non-dominated
solutions in an algorithm A’s Pareto Front dominated by
the non-dominated solutions in an algorithm B’s PF, di-
vided by the total number of nondominated solutions ob-
tained by algorithm A, i.e. NDS(A). Hence, let EPA be the
external population of an algorithm A and EPB be the exter-
nal population of an algorithm B. Then,

CðA; BÞ ¼ jEPA � f2 EPAj9y 2 EPB : y � xgj
NDSðAÞ :

The smaller the CðA;BÞ is, the better A is. Note that
CðA;BÞ – CðB;AÞ.

A common metric, usually considered in cases of real
life discrete optimization problems [30,34], such as DPAP,
is the number of Non-Dominated Solutions (NDS) obtained
by an algorithm A, i.e.

NDSðAÞ ¼ jEPAj:

In DPAP, it is very difficult to obtain many different NDSs.
Hence, the higher the NDS(A) is, the better A is, in order to
provide an adequate number of choices. However, NDS
should be considered in combination with other metrics,
(e.g. D and C metrics), since it is usually desirable to have
a high number of NDS, when the set of solutions is of high
quality and spread in the objective space. In contrast, and
usually in cases of continuous optimization [35], when the
number of NDS is too high, the decision making procedure
becomes more complicated and more time consuming.

Besides, an efficient algorithm should obtain high qual-
ity solutions within an acceptable CPU time. Thus, the
combination of NDS with the C and D metrics and the
CPU time should be an adequate set of metrics to judge
the effectiveness and efficiency of the concerned algo-
rithms. In the following experimental study, statistical
tests are carried out to check the significant difference be-
tween the average results obtained by each algorithm for
each performance metric with a 95% confidence. A one-
way ANOVA test is carried out when a group of algorithms
is compared and the two-sample t-test when two algo-
rithms are compared. Each test returns an h on the null
hypothesis that the average results are not significantly
different against the alternative that the average results
are significantly different. The h ¼ þ indicates a rejection
Please cite this article in press as: A. Konstantinidis et al., A multi-object
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on the null hypothesis and h ¼ � indicates a failure to re-
ject the null hypothesis. Note that, each algorithm is exe-
cuted around 20 times in each study.

6. Experimental results and discussion

The goals of this section are: (1) to study the effect of
the proposed problem-specific evolutionary operators on
the MOEA/D, with respect to several widely used opera-
tors, under various parameter settings. (2) To test the
strength of the problem-specific MOEA/D against the
NSGA-II in several network instances.

6.1. The effect of the evolutionary operators

In this subsection, we study the effect of the proposed
evolutionary operators (i.e. dtsOr, M-tourS, aX and aM)
and evaluate their impact on MOEA/D. To do so, the follow-
ing standard operators were used for comparison purposes:

Ordering: Two techniques were designed and compared
with the proposed dense-to-spread ordering (dtsOr) de-
fined in Section 2.4:

(I) Random ordering (rOr): the solution remains in a
random structure during the search.

(II) x–y axis ordering (xyOr): each solution is ordered
in an increasing order of the locations x-coordi-
nates. In cases where the x-coordinates are the
same then the y-coordinates are considered.

Selection: The standard tournament selection [25] (de-
noted as tourS) and the T-random selection (denoted as
T-randomS) proposed by [35] were compared with the pro-
posed M-tournament selection operator (M-tourS) defined
in Section 3.4.1:

(I) Standard tournament selection (tourS): initiate a
tournament by uniformly randomly selecting M
solutions from the population. The two best solu-
tions (in terms of Pareto dominance [17]), are
selected for parenthood [25].

(II) The T-random selection (T-randomS) proposed by
[35]: for each subproblem i, two solutions are ran-
domly selected from its neighborhood of size T
(the neighborhood is defined in Section 3.2).
Crossover operators: Two standard crossover operators
[25] were compared with the proposed adaptive crossover
operator (aX) defined in Section 3.4.2:

(I) One-point crossover (1X): suppose two parent
solutions (e.g. Pr1; Pr2) of size N. A crossover point
is randomly selected from 1 to N � 1. The pieces
of the parents are exchanged to produce two off-
spring, e.g. O1;O2.

(II) Two-point crossover operator (2X): two crossover
points are randomly selected from numbers 1 to
N � 1. The pieces of the parents are exchanged
to produce two offspring, e.g. O1;O2. The two-
point crossover was originally proposed for
MOEA/D in [35].
ive evolutionary algorithm for the deployment and power assign-
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Table 4
Algorithm parameter settings of test 1, ParSetting1-8.

Algorithms: Alg1-5

Basic design

Settings rc genmax m rm M T

ParSetting1 0.1 100 120 0.5 10 10
ParSetting2 1 100 120 0.1 5 10
ParSetting3 0.1 250 120 0.1 10 2
ParSetting4 1 250 120 0.5 5 2
ParSetting5 0.1 100 200 0.5 5 2
ParSetting6 1 100 200 0.1 10 2
ParSetting7 0.1 250 200 0.1 5 10
ParSetting8 1 250 200 0.5 10 10
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Note that, the 1X and 2X usually produce two
offspring in each recombination. In this paper, one
offspring O is uniformly randomly chosen from fO1;O2g
to keep the number of function evaluations the same,
for fairness.

Mutation operators: A standard (random) mutation
operator was compared with the proposed adaptive Muta-
tion operator (aM), defined in Section 3.4.3:

(I) Random Mutation (rM): a location ðxi; yiÞ is mod-
ified by uniformly randomly generating a new
location ðx0i; y0iÞ 2 A. A standard (random) mutation
is originally proposed for MOEA/D in [35].

This subsection involves nine representative MOEA/D
versions, as summarized in Table 3. Each algorithm is com-
posed of different evolutionary operators. The algorithms
are studied in three tests in NIn1. In each test, a 26�3 frac-
tional factorial design of the parameter settings (Table 2) is
adopted.

Test 1 – The effect of the adaptive crossover (aX) with the
dense to spread ordering (dtsOr)

Test 1 studies the effect of the adaptive crossover (aX)
defined in Section 3.4.2, with the dense to spread ordering
(dtsOr) defined in Section 2.4. Thus, the crossover rate
rc; genmax and m (where genmax �m is the total number of
function evaluations performed by each algorithm in each
run) are considered in the basic design as the main effects
of test 1 (Table 4). Then Algorithms 1–5 of Table 3 are
compared on NIn1.

From the results of test 1, summarized in Table 5, the
following conclusions are drawn:
� Alg3 obtains the best D ¼ 0:9069 performance with

Alg5 being slightly worse with D ¼ 0:9081. There is
a significant difference between the results in terms
of D-metric. Alg5 is the fastest method, with respect
to Alg1-4, since it requires 0.7645 h in average, to
obtain the highest number of NDS ¼ 12:3750. Both
the CPU time and NDS are not significantly different
from the results obtained by the other MOEA/Ds.

� The comparison in terms of the C-metric shows that
the xyOr encoding favors the 1X crossover in Alg2,
which outperforms Alg1. In contrast, the rOr is more
effective for the 2X crossover, since Alg4 outperforms
Alg3. Thereinafter, the comparison between Alg2 and
Table 3
Evolutionary components combinations.

Algorithm Representation/
ordering

Selection Crossover Mutation

Alg1 rOr tourS 1X rM
Alg2 xyOr tourS 1X rM
Alg3 rOr tourS 2X rM
Alg4 xyOr tourS 2X rM
Alg5 dtsOr tourS aX rM
Alg6 xyOr M-tourS 2X rM
Alg7 dtsOr T-randomS aX rM
Alg8 dtsOr M-tourS aX rM
Alg9 dtsOr M-tourS aX aM

Please cite this article in press as: A. Konstantinidis et al., A multi-object
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Alg4 shows the superiority of 2X crossover with rOr,
which also outperforms Alg5. In all cases, the quality
difference between the MOEA/Ds is significant.

The reason that Alg5 (composed of the proposed aX and
dtsOr encoding) performs poorly in test 1 is mentioned in
Section 3.4.1 and Remark 1. That is, the generic tourna-
ment selection operator tourS, used in test 1, does not pro-
vide adequate selection pressure (i.e. does not select the
best parents in the population). This has a negative impact
on the proposed aX with dtsOr, resulting in poor offspring
reproduction. Therefore, in the next test, the proposed M-
tourS operator is adopted to improve Alg5’s performance.

Test 2 – The effect of the M-tournament selection opera-
tor (M-tourS):

In this test, we study the effect of the proposed selec-
tion operator (i.e. M-tourS), defined in Section 3.4.1. The
experimental design of test 2 is presented in Table 6, in
which M replaces rc since M is a selection operator param-
eter. Alg7 extends Alg5 by replacing the standard selection
tourS with the selection operator proposed by [35], i.e. T-
randomS. Alg8 extends Alg5 by replacing the tourS with
the proposed selection operator (M-tourS) to add network
knowledge in this particular operator of MOEA/D and in-
crease the selection pressure. Alg6 extends Alg4 (which is
currently the algorithm with the highest quality on the
PF according to test 1) by also replacing tourS with the pro-
posed M-tourS. Tables 7 and 8 summarizes the results of
test 2. The following conclusions are drawn:
� By increasing the selection pressure of Alg4, i.e. Alg6,

the algorithm becomes slightly slower, obtaining
lower diversity and significantly lower quality solu-
tions in the PF. The solutions obtained by Alg4 dom-
inate 62% of those obtained by Alg6. A slight increase
is shown in the number of NDS.

� In contrast, Alg5 is outperformed by its extended ver-
sion Alg7, giving a significant difference in quality.
The performance of Alg7 increases with respect to
Alg4 as well, in terms of D, number of NDS and CPU
time, at the cost of a lower quality of solutions in
the PF (i.e. 35% of its solutions are dominated by
Alg4). When the selection pressure is increased in
Alg8, the MOEA/D becomes slower and slightly worse
than its predecessor Alg5, in terms of diversity. How-
ever, it provides a higher number of NDS and the
highest quality solutions obtained so far, with
respect to Alg1-7.
ive evolutionary algorithm for the deployment and power assign-
10.1016/j.comnet.2009.08.010
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Table 5
The statistical results of test 1 for ParSetting1-8.

Metric Alg1 Alg2 Alg3 Alg4 Alg5 ANOVA

D: 0.9383 1.0131 0.9069 0.9208 0.9081 +
CPU time: 0.9100 1.4366 0.8787 1.4241 0.7645 –
NDS: 9.5000 8.7500 9.2500 7.7500 12.3750 –

C-metric: Alg(1,2) Alg(2,1) Alg(3,4) Alg(4,3) Alg(2,4) Alg(4,2) Alg(4,5) Alg(5,4)

Average: 0.6749 0.0235 0.6158 0.0000 0.4750 0.2556 0.2899 0.4996
t-Test: + + + +

Table 9
The statistical results of test 3 for ParSetting17-24.

Metric Alg7 Alg8 Alg9 ANOVA

D: 0.9135 0.9362 0.9010 –
CPU time: 0.3179 0.4975 0.4940 –
NDS: 15.8750 14.0000 14.6250 –

C metric: Alg(7,9) Alg(9,7) Alg(8,9) Alg(9,8)

Average: 0.5289 0.2736 0.7061 0.2187
t-Test: + +

Table 8
Algorithm parameter settings of test 3, ParSetting17-24.

Algorithms: Alg7-9

Basic Design

Settings rm genmax m M rc T

ParSetting17 0.1 100 120 10 1 10
ParSetting18 0.5 100 120 5 0.1 10
ParSetting19 0.1 250 120 5 1 2
ParSetting20 0.5 250 120 10 0.1 2
ParSetting21 0.1 100 200 10 0.1 2
ParSetting22 0.5 100 200 5 1 2
ParSetting23 0.1 250 200 5 0.1 10
ParSetting24 0.5 250 200 10 1 10

Table 6
Algorithm parameter settings of test 2, ParSetting9-16.

Algorithms: Alg4-8

Basic design

Settings M genmax m rm rc T

ParSetting9 5 100 120 0.5 1 10
ParSetting10 10 100 120 0.1 0.1 10
ParSetting11 5 250 120 0.1 1 2
ParSetting12 10 250 120 0.5 0.1 2
ParSetting13 5 100 200 0.5 0.1 2
ParSetting14 10 100 200 0.1 1 2
ParSetting15 5 250 200 0.1 0.1 10
ParSetting16 10 250 200 0.5 1 10
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Hence, the increase in the selection pressure provided
by M-tourS, improves the performance of MOEA/D in terms
of the NDS and the quality of solutions in the PF, at the cost
of a slightly lower diversity (see Section 3.4.1, Remark 2).
To avoid the loss of diversity, the proposed adaptive muta-
tion operator is further adopted in Test 3.

Test 3 – The effect of the adaptive mutation operator (aM):
Test 3 studies the effect of the proposed adaptive muta-

tion operator (aM), defined in Section 3.4.3. The experi-
mental design of test 3 is presented in Table 4, where the
mutation rate rm replaces M. In this test, Alg9 extends
Alg8 by introducing the proposed aM to add network
knowledge in this particular evolutionary component of
MOEA/D and increase the diversity of the PF. The statistical
results of test 3, summarized in Table 9, show the effective-
ness of the proposed mutation operator, as follows:
� Alg9 performs better in terms of diversity and quality

of solutions in the PF, with respect to both its prede-
cessors Alg7 and Alg8. Besides, Alg9 is faster than
Alg8 with a higher average number of NDS. However,
only the difference in quality (i.e. C-metric) is
significant.

In conclusion, the proposed evolutionary operators
compose an efficient problem-specific MOEA/D, providing
Table 7
The statistical results of test 2 for ParSetting9-16.

Metric Alg4 Alg5 Alg6

D: 0.9507 0.9209 0.9762
CPUtime: 0.7244 0.4161 0.7700
NDS: 9.1250 11.2500 12.875
C-metric: Alg(4,6) Alg(6,4) Alg(5,7) Alg(7,5

Average: 0.2125 0.6274 0.6734 0.2135
t-Test: + +

Please cite this article in press as: A. Konstantinidis et al., A multi-object
ment problem in wireless sensor networks, Comput. Netw. (2009), doi:
a large, diverse set of high quality network designs within
an acceptable CPU time. The superiority of the proposed
MOEA/D (i.e. Alg9) with respect to the two conventional
MOEA/Ds (i.e. Alg1 and Alg3) is illustrated in Fig. 4. Note
that in all cases the lines between the points are just for
better visualization and do not necessarily imply the pres-
ence of Pareto optimal solutions.
6.2. Further discussion on the adaptive crossover operator

In this subsection, we verify the effectiveness of the
proposed adaptive crossover operator. This is empirically
shown by comparing the MOEA/D with the two crossover
Alg7 Alg8 ANOVA

0.9088 0.9309 –
0.3705 0.7542 –

0 15.8750 13.5000 –
) Alg(4,7) Alg(7,4) Alg(4,8) Alg(8,4)

0.2798 0.3543 0.3820 0.3645
– –

ive evolutionary algorithm for the deployment and power assign-
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Fig. 4. The DPAP-specific MOEA/D (i.e. Alg9) vs. general purpose MOEA/Ds (i.e. Alg1 and Alg3), NIn1.
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Fig. 5. MOEA/D with the window, the clustering and the adaptive (aX) crossovers in ParSetting1-8, NIn1.
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strategies individually and probabilistically (i.e. adaptive
crossover operator) for the parameter settings of Table 4
in NIn1. The results in Fig. 5 clearly show the preference
of each problem-specific crossover strategy on different
subproblems. The window crossover is more flexible and
generates non-dominated solutions across, almost, the
whole range of the PF. However, the drawback mentioned
in Section 3.4.2 (Remark 1) is clearly demonstrated in all
cases. That is, the window crossover produces poor off-
spring when the k parameter is low and consequently,
when the subproblems desire a high coverage quality. In
other words, the window crossover lacks obtaining high
Please cite this article in press as: A. Konstantinidis et al., A multi-object
ment problem in wireless sensor networks, Comput. Netw. (2009), doi:
quality solution(s) in area c and to approximate solution
XB.

On the other hand, the clustering crossover is dedicated
to providing solutions in the aforementioned areas of the
PF, giving non-dominated solutions of higher coverage
quality in almost all test instances, approximating the opti-
mal solution XB (Section 3.4.2, Remark 2). However, it lacks
obtaining high quality solutions for the rest of the PF. This
is due to the high transmission distances and consequently
the high transmit power levels assigned to the sensors
through the clustering crossover (Section 3.4.2, Remark
3). Thereinafter, the adaptability of the proposed crossover
ive evolutionary algorithm for the deployment and power assign-
10.1016/j.comnet.2009.08.010
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operator is demonstrated. The aX takes advantage of both
the window and the clustering crossover strategies and
provides a diverse set of high quality solutions across the
whole range of the objective space.

6.3. Comparison of MOEAs

In this subsection, we study the efficiency and effective-
ness of the proposed problem-specific MOEA/D on DPAP.
To do so, we have compared the proposed method with a
state of the art in MOEAs based on Pareto dominance.
Namely, the Non-dominated Sorting Genetic Algorithm-II
(NSGA-II) [29]. NSGA-II maintains a population IPgen of size
m at each generation gen, for genmax generations. NSGA-II
adopts the evolutionary operators (i.e. selection, crossover
and mutation) for offspring reproduction as MOEA/D. The
key characteristic of NSGA-II is that it uses a fast non-dom-
inated sorting and a crowded distance estimation for com-
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Fig. 6. MOEA/D vs. NS

Table 10
MOEA/D (MD) vs. NSGA-II (NG), NIn1-4.

Metric: D(MD) D(NG) CPU(MD) CPU(NG)

NIn1: 0.9842 0.7417 0.2588 2.7466
NIn2: 0.9780 0.6535 2.2655 2.7451
NIn3: 0.6515 0.6852 1.3784 1.3300
NIn4: 0.7597 0.8235 37.5989 9.0934

t-Test: – –

Table 11
Analytical extreme solutions XA and XB and their approximation by the solutions

NIn Method LðXA n X1Þ

1 Analytical 1
MOEA/D 1
NSGA-II 1

2 Analytical 1

MOEA/D 1
NSGA-II 1

3 Analytical 1

MOEA/D 1
NSGA-II 1

4 Analytical 1

MOEA/D 1
NSGA-II 1

Please cite this article in press as: A. Konstantinidis et al., A multi-object
ment problem in wireless sensor networks, Comput. Netw. (2009), doi:
paring the quality of different solutions during selection
and to update the IPgen and the EP. We refer interested
readers to [29] for details. In this paper, NSGA-II adopts
the following non-decompositional operators that have
shown promising performance in Section 6.1: the x–y axis
ordering (xyOr) (Ordering-II), the standard tournament
selection (tourS) (Selection-I), the two-point crossover
(2X) (Crossover-II) and the random mutation (rM) (Muta-
tion-I). For comparing the two MOEAs we have adopted
both visual and statistical comparison, through the perfor-
mance metrics introduced in Section 5, in all network test
instances of Table 1. The parameter settings were fixed,
following the experience we gained from the latter exper-
imental study: genmax ¼ 250;m ¼ 120; rc ¼ 0:9; rm ¼ 0:5
and M ¼ 10. For MOEA/D, the number of subproblems is
m and T ¼ 2. Note that it is difficult to select optimal
parameter values and a set of experiments cannot yield
an insight that can be claimed in generality.
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GA-II on NIn1-4.

NDS(MD) NDS(NG) C(MD,NG) C(NG,MD)

10 8 0.1000 0.7500
21 10 0.1905 0.2000
23 17 0.0000 1.0000
21 21 0.0000 0.8571

– +

X1 and Xm obtained by MOEA/D and NSGA-II.

CvðXA n X1Þ LðXB n XmÞ CvðXB n XmÞ

0.16 0.00003 0.408
0.1511 0.065 0.3956
0.0974 0.25 0.1793

0.04 7:69� 10�5 0.3926

0.027475 0.01 0.341525
0.0272 0.125 0.05

0.16 8� 10�5 1

0.1431 0.04 0.944
0.1118 0.045 0.4221

0.04 2� 10�5 1

0.0342 0.01 0.949575
0.0262 0.04 0.131

ive evolutionary algorithm for the deployment and power assign-
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Fig. 6 and Table 10 show the superiority of the proposed
MOEA/D against the NSGA-II. MOEA/D performs better than
NSGA-II in terms of quality and number of NDS in all net-
work instances and in terms of diversity in dense network
topologies. In network topologies with low density, NSGA-
II provides a more uniform spread of solutions. The PF ob-
tained by MOEA/D, however, is much wider than the one
obtained by NSGA-II in all cases, giving solutions in almost
the whole area of the objective space. In contrast, NSGA-II
lacks obtaining non-dominated network designs in area c
and obtains few designs in area b. The difference between
the two algorithms in terms of quality is significant. Note
that, the CPU time required by the two approaches is not
significantly different. Table 11 summarizes the lifetime
and coverage of the extreme network designs XA and XB,
which are analytically measured according to Section 2.3
for each network instance, and their approximation by the
solutions X1 and Xm obtained by each MOEA. The results
show that MOEA/D approximates the extreme network de-
signs more efficiently than NSGA-II. Another conclusion
that can be empirically drawn is that, MOEA/D is not sensi-
tive on the WSN’s area size or density giving similar results
in each case. That is, MOEA/D obtains a similar approxima-
tion towards the extreme solutions XA and XB in terms of
lifetime and coverage quality, for the same 10;000 m2 and
40;000 m2 area sizes with different densities and for the
same 0.0013 and 0.005 densities in different area sizes.

7. Conclusions and future research

In this paper, the DPAP in WSNs is formulated as a MOP
and is decomposed into a set of scalar subproblems. The
subproblems are classified based on their objective prefer-
ences and tackled by MOEA/D using problem-specific
knowledge, simultaneously. A solution representation ded-
icated to DPAP and several DPAP-specific, MOEA/D-based
evolutionary operators are proposed. Namely, the M-tour-
nament selection, the adaptive crossover and the adaptive
mutation operators, which are highly interrelated with
each other and adapt to the needs and objective preferences
of each subproblem dynamically, during the evolution.
Simulation results have shown the effectiveness of the pro-
posed EA operators on improving the performance of
MOEA/D. The problem-specific MOEA/D has finally demon-
strated its superiority against NSGA-II on several network
test instances. MOEA/D obtains a diverse set of high quality
WSN designs, without any prior knowledge on the objec-
tive preferences to facilitate the decision maker’s choice.

There is a number of avenues for further research. For
example, it will be interesting to test the performance of
the proposed operators against more sophisticated EA
operators, such as [43]. Moreover, the DPAPs in WSNs in-
clude many features (e.g. small, massively dense topolo-
gies) and issues (e.g. connectivity), which are also
important as those in the proposed DPAP. Thus, various
multiobjective DPAPs can be defined and tackled by prob-
lem-specific MOEA/Ds, similarly to this work. In principle,
MOEA/D can easily adopt local search techniques. Hence,
designing low-level problem-specific local heuristics, for
further improving the performance of MOEA/D is also a fu-
ture study.
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